Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The structurally related, inwardly rectifying K+ (K(IR)) channel and the ATP-sensitive K+ (K(ATP)) channel are important modulators of cerebral artery tone. Although protein kinase C (PKC) activators have been shown to inhibit these channels with the use of patch-clamp electrophysiology, effects of PKC on K+ channel function in intact cerebral blood vessels are unknown. We therefore tested whether pharmacological alteration of PKC activity affects cerebral vasodilator responses to K(IR) and/or K(ATP) channel activators in vivo. METHODS We measured changes in basilar artery diameter using a cranial window preparation in anesthetized rats. In addition, intracellular recordings of smooth muscle membrane potential were made in isolated basilar arteries. RESULTS K+ (5 to 15 mmol/L) and aprikalim (1 to 10 micromol/L) each elicited reproducible vasodilatation. The PKC activator phorbol-12,13-dibutyrate (PdBu) (50 nmol/L) inhibited responses to K+ (by 40% to 55%) and aprikalim (by 40% to 70%), whereas responses to papaverine were unaffected. The PKC inhibitor calphostin C (0.1 micromol/L) augmented responses to K+ (by 2- to 3-fold) and aprikalim (2-fold) but not papaverine. In addition, K+ (5 mmol/L) and aprikalim (3 micromol/L) each hyperpolarized the basilar artery. PdBu inhibited these responses to aprikalim by 45% but had no effect on K+-induced hyperpolarization. CONCLUSIONS These data suggest that both basal and stimulated PKC activity inhibit K(IR) and K(ATP) channel-mediated cerebral vasodilatation in vivo. The inhibitory effect on K(ATP) channel-mediated vasodilatation occurs at least partly by inhibition of hyperpolarization mediated by K(ATP) channels. PKC inhibits K+-induced vasodilatation without affecting hyperpolarization, suggesting that the inhibitory effect of PKC on vasodilator responses to K+ does not involve altered K(IR) channel function.
منابع مشابه
Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملInfluence of gender on K+-induced cerebral vasodilatation.
BACKGROUND AND PURPOSE It is not known whether cerebral vasoprotective mechanisms in females include increased function of arterial K+ channels. We hypothesized that vasodilator responses mediated by activation of inwardly rectifying K+ (K(IR)) channels are greater in cerebral arteries of female versus male rats and that this is due to the effects of estrogen. METHODS Changes in basilar arter...
متن کاملEffect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملSensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
We demonstrate here that coexpression of ROMK2, an inwardly rectifying ATP-sensitive renal K+ channel (IKATP) with cystic fibrosis transmembrane regulator (CFTR) significantly enhances the sensitivity of ROMK2 to the sulfonylurea compound glibenclamide. When expressed alone, ROMK2 is relatively insensitive to glibenclamide. The interaction between ROMK2, CFTR, and glibenclamide is modulated by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2002